Ready made Potentials

The following sections contain some potentials that are implemented in the potential library. The plots show the eigenvalues or energy surfaces. Some potentials have additional parameters, the default values for these are also Name.

Potential cos_osc

  • Formula: V(x) = a \left(- \cos{\left (b x \right )} + 1\right)
  • Variables: x
  • Default values:
    • a = 0.07
    • b = 1.0
../_images/cos_osc.png

Potential cosh_osc

  • Formula: V(x) = a \cosh{\left (b x \right )}
  • Variables: x
  • Default values:
    • a = 1
    • b = 1
../_images/cosh_osc.png

Potential double_well

  • Formula: V(x) = \sigma \left(x^{2} - 1\right)^{2}
  • Variables: x
  • Default values:
    • \sigma = 1.0
../_images/double_well.png

Potential double_well2

  • Formula: V(x) = a x^{4} - b x^{2}
  • Variables: x
  • Default values:
    • a = 1.0
    • b = 1.0
../_images/double_well2.png

Potential eckart

  • Formula: V(x) = \frac{\sigma}{\cosh^{2}{\left (\frac{x}{a} \right )}}
  • Variables: x
  • Default values:
    • a = 0.944858082316
    • \sigma = 0.038088
../_images/eckart.png

Potential free_particle

  • Formula: V(x) = c
  • Variables: x
  • Default values:
    • c = 0
../_images/free_particle.png

Potential kratzer

  • Formula: V(x) = \frac{b \left(b - 1\right)}{2 x^{2}} + \frac{x^{2}}{2}
  • Variables: x
  • Default values:
    • b = 2.0
../_images/kratzer.png

Potential morse

  • Formula: V(x) = D \left(1 - e^{- a \left(x - x_{0}\right)}\right)^{2}
  • Variables: x
  • Default values:
    • a = 0.5
    • x_{0} = 0.0
    • D = 3.0
../_images/morse.png

Potential morse_zero

  • Formula: V(x) = D \left(- 2 e^{- a \left(x - x_{0}\right)} + e^{- 2 a \left(x - x_{0}\right)}\right)
  • Variables: x
  • Default values:
    • a = 0.5
    • x_{0} = 0.0
    • D = 3.0
../_images/morse_zero.png

Potential morse_zero_2

  • Formula: V(x) = l^{2} \left(e^{- 2 x + 2 x_{0}} - 2 e^{- x + x_{0}}\right)
  • Variables: x
  • Default values:
    • x_{0} = 0.0
    • l = 1.0
../_images/morse_zero_2.png

Potential pert_quadratic

  • Formula: V(x) = \frac{\delta^{2} x^{2}}{2} + \frac{\sigma x^{2}}{2}
  • Variables: x
  • Default values:
    • \sigma = 0.05
    • \delta = 0.2
../_images/pert_quadratic.png

Potential quadratic

  • Formula: V(x) = \frac{\sigma x^{2}}{2}
  • Variables: x
  • Default values:
    • \sigma = 1/2
../_images/quadratic.png

Potential quartic

  • Formula: V(x) = \frac{\sigma x^{4}}{4}
  • Variables: x
  • Default values:
    • \sigma = 0.05
../_images/quartic.png

Potential v_shape

  • Formula: V(x) = \frac{1}{2} \sqrt{4 \delta^{2} + \tanh^{2}{\left (x \right )}}
  • Variables: x
  • Default values:
    • \delta = 0.2
../_images/v_shape.png

Potential wall

  • Formula: V(x) = \operatorname{atan}{\left (\sigma x \right )} + \frac{\pi}{2}
  • Variables: x
  • Default values:
    • \sigma = 10.0
../_images/wall.png

Potential delta_gap

  • Formula: V(x) = \left[\begin{matrix}\frac{1}{2} \tanh{\left (x \right )} & \delta\\\delta & - \frac{1}{2} \tanh{\left (x \right )}\end{matrix}\right]
  • Variables: x
  • Default values:
    • \delta = 0.2
../_images/delta_gap.png

Potential delta_gap_diag

  • Formula: V(x) = \left[\begin{matrix}\sqrt{\delta^{2} + \frac{1}{4} \tanh^{2}{\left (x \right )}} & 0\\0 & - \sqrt{\delta^{2} + \frac{1}{4} \tanh^{2}{\left (x \right )}}\end{matrix}\right]
  • Variables: x
../_images/delta_gap_diag.png

Potential two_crossings

  • Formula: V(x) = \left[\begin{matrix}\frac{1}{2} \tanh{\left (- \rho + x \right )} \tanh{\left (\rho + x \right )} & \frac{\delta}{2}\\\frac{\delta}{2} & - \frac{1}{2} \tanh{\left (- \rho + x \right )} \tanh{\left (\rho + x \right )}\end{matrix}\right]
  • Variables: x
  • Default values:
    • \rho = 3.0
../_images/two_crossings.png

Potential two_quadratic

  • Formula: V(x) = \left[\begin{matrix}\frac{\sigma x^{2}}{2} & 0\\0 & \frac{\sigma x^{2}}{2}\end{matrix}\right]
  • Variables: x
  • Default values:
    • \sigma = 0.05
../_images/two_quadratic.png

Potential two_quartic

  • Formula: V(x) = \left[\begin{matrix}\frac{\sigma x^{4}}{4} & 0\\0 & \frac{\sigma x^{4}}{8}\end{matrix}\right]
  • Variables: x
  • Default values:
    • \sigma = 1
../_images/two_quartic.png

Potential three_levels

  • Formula: V(x) = \left[\begin{matrix}\tanh{\left (- \rho + x \right )} + \tanh{\left (\rho + x \right )} & \delta_{1} & \delta_{2}\\\delta_{1} & - \tanh{\left (\rho + x \right )} & 0\\\delta_{2} & 0 & - \tanh{\left (- \rho + x \right )} + 1\end{matrix}\right]
  • Variables: x
  • Default values:
    • \rho = 3.0
../_images/three_levels.png

Potential three_quadratic

  • Formula: V(x) = \left[\begin{matrix}\frac{\sigma x^{2}}{2} & 0 & 0\\0 & \frac{\sigma x^{2}}{2} & 0\\0 & 0 & \frac{\sigma x^{2}}{2}\end{matrix}\right]
  • Variables: x
  • Default values:
    • \sigma = 0.05
../_images/three_quadratic.png

Potential four_powers

  • Formula: V(x) = \left[\begin{matrix}\frac{\sigma x^{2}}{2} & 0 & 0 & 0\\0 & \frac{\sigma x^{4}}{4} & 0 & 0\\0 & 0 & \frac{\sigma x^{6}}{6} & 0\\0 & 0 & 0 & \frac{\sigma x^{8}}{8}\end{matrix}\right]
  • Variables: x
  • Default values:
    • \sigma = 0.05
../_images/four_powers.png

Potential four_quadratic

  • Formula: V(x) = \left[\begin{matrix}\frac{\sigma x^{2}}{2} & 0 & 0 & 0\\0 & \frac{\sigma x^{2}}{2} & 0 & 0\\0 & 0 & \frac{\sigma x^{2}}{2} & 0\\0 & 0 & 0 & \frac{\sigma x^{2}}{2}\end{matrix}\right]
  • Variables: x
  • Default values:
    • \sigma = 0.05
../_images/four_quadratic.png

Potential five_quadratic

  • Formula: V(x) = \left[\begin{matrix}\frac{\sigma x^{2}}{2} & 0 & 0 & 0 & 0\\0 & \frac{\sigma x^{2}}{2} & 0 & 0 & 0\\0 & 0 & \frac{\sigma x^{2}}{2} & 0 & 0\\0 & 0 & 0 & \frac{\sigma x^{2}}{2} & 0\\0 & 0 & 0 & 0 & \frac{\sigma x^{2}}{2}\end{matrix}\right]
  • Variables: x
  • Default values:
    • \sigma = 0.05
../_images/five_quadratic.png

Potential channel_2d

  • Formula: V(x) = sigmax x + \frac{sigmay y^{2}}{2}
  • Variables: x, y
  • Default values:
    • sigmay = 0.45
    • sigmax = 0.0
../_images/channel_2d.png

Potential circle_pit_2d

  • Formula: V(x) = \operatorname{atan}{\left (\sigma \left(- R + \sqrt{x^{2} + y^{2}}\right) \right )} + \frac{\pi}{2}
  • Variables: x, y
  • Default values:
    • R = 8
    • \sigma = 10
../_images/circle_pit_2d.png

Potential corral_ring

  • Formula: V(x) = - \frac{1}{2} \sqrt{\delta^{2} + \tanh^{2}{\left (- R + \sqrt{x^{2} + y^{2}} \right )} \tanh^{2}{\left (R + \sqrt{x^{2} + y^{2}} \right )}}
  • Variables: x, y
  • Default values:
    • R = 3
    • \delta = 1
../_images/corral_ring.png

Potential corral_rotsym_2d

  • Formula: V(x) = \operatorname{atan}{\left (\sigma \left(- R + \sqrt{x^{2} + y^{2}}\right) \right )} + \frac{\pi}{2}
  • Variables: x, y
  • Default values:
    • R = 8
    • \sigma = 10
../_images/corral_rotsym_2d.png

Potential cos_osc_2d

  • Formula: V(x) = ax \left(- \cos{\left (bx x \right )} + 1\right) + ay \left(- \cos{\left (by y \right )} + 1\right)
  • Variables: x, y
  • Default values:
    • ay = 1
    • ax = 1
    • bx = 1
    • by = 1
../_images/cos_osc_2d.png

Potential cos_osc_add_2d

  • Formula: V(x) = - \cos{\left (a x \right )} - \cos{\left (b y \right )}
  • Variables: x, y
  • Default values:
    • a = 1
    • b = 1
../_images/cos_osc_add_2d.png

Potential cos_osc_mul_2d

  • Formula: V(x) = - \cos{\left (a x \right )} \cos{\left (b y \right )}
  • Variables: x, y
  • Default values:
    • a = 1
    • b = 1
../_images/cos_osc_mul_2d.png

Potential cos_osc_rotsym_2d

  • Formula: V(x) = - a \cos{\left (b \left(x^{2} + y^{2}\right) \right )}
  • Variables: x, y
  • Default values:
    • a = 1
    • b = 1
../_images/cos_osc_rotsym_2d.png

Potential cosh_osc_2d

  • Formula: V(x) = ax \left(\cosh{\left (bx x \right )} + 1\right) + ay \left(\cosh{\left (by y \right )} + 1\right)
  • Variables: x, y
  • Default values:
    • ay = 1
    • ax = 1
    • bx = 1
    • by = 1
../_images/cosh_osc_2d.png

Potential cosh_osc_add_2d

  • Formula: V(x) = \cosh{\left (a x \right )} + \cosh{\left (b y \right )}
  • Variables: x, y
  • Default values:
    • a = 1
    • b = 1
../_images/cosh_osc_add_2d.png

Potential cosh_osc_mul_2d

  • Formula: V(x) = \cosh{\left (a x \right )} \cosh{\left (b y \right )}
  • Variables: x, y
  • Default values:
    • a = 1
    • b = 1
../_images/cosh_osc_mul_2d.png

Potential cosh_osc_rotsym_2d

  • Formula: V(x) = a \cosh{\left (b \sqrt{x^{2} + y^{2}} \right )}
  • Variables: x, y
  • Default values:
    • a = 1
    • b = 1
../_images/cosh_osc_rotsym_2d.png

Potential double_well_2d

  • Formula: V(x) = ax x^{4} + ay y^{4} - bx x^{2} - by y^{2} - cx x - cy y
  • Variables: x, y
  • Default values:
    • cy = 0.0
    • cx = 0.0
    • ay = 1.0
    • ax = 1.0
    • bx = 4.0
    • by = 0.0
../_images/double_well_2d.png

Potential double_well_harmonic_2d

  • Formula: V(x) = ax x^{4} + ay y^{4} - bx x^{2} - by y^{2} - cx x - cy y
  • Variables: x, y
  • Default values:
    • cy = 0.0
    • cx = 0.0
    • ay = 0.0
    • ax = 1.0
    • bx = 4.0
    • by = -1.0
../_images/double_well_harmonic_2d.png

Potential eckart_bn

  • Formula: V(x) = \frac{k y^{2}}{2} \left(- \sigma e^{- l x^{2}} + 1\right) + \frac{v_{0}}{\cosh^{2}{\left (a x \right )}}
  • Variables: x, y
  • Default values:
    • v_{0} = 0.425
    • a = 1.3624
    • k = 0.06784
    • \sigma = 0.5
    • l = 0.25
../_images/eckart_bn.png

Potential gauss_hill_2d

  • Formula: V(x) = e^{- sigmax x^{2} - sigmay y^{2}}
  • Variables: x, y
  • Default values:
    • sigmay = 1
    • sigmax = 1
../_images/gauss_hill_2d.png

Potential harmonic_channel

  • Formula: V(x) = \sigma y + \frac{w^{2} x^{2}}{2}
  • Variables: x, y
  • Default values:
    • \sigma = -0.1
    • w = 1.0
../_images/harmonic_channel.png

Potential henon_heiles

  • Formula: V(x) = \frac{a}{2} \left(x^{2} + y^{2}\right) + b \left(x^{2} y - \frac{y^{3}}{3}\right)
  • Variables: x, y
  • Default values:
    • a = 1
    • b = 1/2
../_images/henon_heiles.png

Potential morse_threefold

  • Formula: V(x) = \left(- e^{\left(- \sigma - \frac{1}{16} \left(- \cos{\left (3 \operatorname{atan_{2}}{\left (y,x \right )} \right )} + 1\right)^{2}\right) \left(x^{2} + y^{2}\right)} + 1\right)^{2}
  • Variables: x, y
  • Default values:
    • \sigma = 0.05
../_images/morse_threefold.png

Potential morse_threefold_2

  • Formula: V(x) = \left(- e^{\frac{1}{16 \left(x^{2} + y^{2}\right)^{2}} \left(- 16 \sigma \left(x^{2} + y^{2}\right)^{3} - \left(x \left(x^{2} - 3 y^{2}\right) - \left(x^{2} + y^{2}\right)^{\frac{3}{2}}\right)^{2}\right)} + 1\right)^{2}
  • Variables: x, y
  • Default values:
    • \sigma = 0.05
../_images/morse_threefold_2.png

Potential pullen_edmonds

  • Formula: V(x) = a x^{2} y^{2} + \frac{b_{1} x^{2}}{2} + \frac{b_{2} y^{2}}{2}
  • Variables: x, y
  • Default values:
    • a = 1
    • b_{1} = 1
    • b_{2} = 1
../_images/pullen_edmonds.png

Potential quad_well

  • Formula: V(x) = ax x^{4} + ay y^{4} - bx x^{2} - by y^{2} - cx x - cy y
  • Variables: x, y
  • Default values:
    • cy = 0.0
    • cx = 0.0
    • ay = 1.0
    • ax = 1.0
    • bx = 3.0
    • by = 3.0
../_images/quad_well.png

Potential quadratic_2d

  • Formula: V(x) = \frac{sigmax x^{2}}{2} + \frac{sigmay y^{2}}{2}
  • Variables: x, y
  • Default values:
    • sigmay = 1/2
    • sigmax = 1/2
../_images/quadratic_2d.png

Potential quartic_2d

  • Formula: V(x) = sigmax x^{4} + sigmay y^{4}
  • Variables: x, y
  • Default values:
    • sigmay = 1
    • sigmax = 1
../_images/quartic_2d.png

Potential quartic_2d_rotsym

  • Formula: V(x) = sigmax^{2} x^{4} + 2 sigmax sigmay x^{2} y^{2} + sigmay^{2} y^{4}
  • Variables: x, y
  • Default values:
    • sigmay = 1
    • sigmax = 1
../_images/quartic_2d_rotsym.png

Potential quartic_reg_2d

  • Formula: V(x) = sigmax x^{4} + sigmay y^{4} + taux x^{2} + tauy y^{2}
  • Variables: x, y
  • Default values:
    • taux = 1
    • tauy = 1
    • sigmay = 1
    • sigmax = 1
../_images/quartic_reg_2d.png

Potential quartic_rotsym_reg_2d

  • Formula: V(x) = sigmax x^{4} + sigmay y^{4} + taux x^{2} + tauy y^{2} + 2 x^{2} y^{2} \sqrt{sigmax sigmay}
  • Variables: x, y
  • Default values:
    • taux = 1
    • tauy = 1
    • sigmay = 1
    • sigmax = 1
../_images/quartic_rotsym_reg_2d.png

Potential ring_valley

  • Formula: V(x) = \frac{1}{2} \sqrt{\delta^{2} + \tanh^{2}{\left (- R + \sqrt{x^{2} + y^{2}} \right )} \tanh^{2}{\left (R + \sqrt{x^{2} + y^{2}} \right )}}
  • Variables: x, y
  • Default values:
    • R = 3
    • \delta = 1
../_images/ring_valley.png

Potential sextic_2d

  • Formula: V(x) = sigmax x^{6} + sigmay y^{6}
  • Variables: x, y
  • Default values:
    • sigmay = 1
    • sigmax = 1
../_images/sextic_2d.png

Potential sextic_reg_2d

  • Formula: V(x) = sigmax x^{6} + sigmay y^{6} + taux x^{2} + tauy y^{2}
  • Variables: x, y
  • Default values:
    • taux = 1
    • tauy = 1
    • sigmay = 1
    • sigmax = 1
../_images/sextic_reg_2d.png

Potential sextic_rotsym_reg_2d

  • Formula: V(x) = ax^{3} x^{6} + 3 ax^{2} ay x^{4} y^{2} + 3 ax ay^{2} x^{2} y^{4} + ay^{3} y^{6} + taux x^{2} + tauy y^{2}
  • Variables: x, y
  • Default values:
    • ay = 1
    • ax = 1
    • taux = 1
    • tauy = 1
../_images/sextic_rotsym_reg_2d.png

Potential sine_maar

  • Formula: V(x) = \alpha e^{- \sigma \left(x^{2} + y^{2}\right)} + \sin{\left (x^{2} + y^{2} \right )}
  • Variables: x, y
  • Default values:
    • \alpha = 0.8
    • \sigma = 1.0
../_images/sine_maar.png

Potential conic

  • Formula: V(x) = \left[\begin{matrix}x & y\\y & - x\end{matrix}\right]
  • Variables: x, y
../_images/conic.png

Potential conic_avoided

  • Formula: V(x) = \left[\begin{matrix}x & \sqrt{\delta^{2} + y^{2}}\\\sqrt{\delta^{2} + y^{2}} & - x\end{matrix}\right]
  • Variables: x, y
  • Default values:
    • \delta = 1.0
../_images/conic_avoided.png

Potential conic_avoided_c

  • Formula: V(x) = \left[\begin{matrix}x & i \delta + y\\- i \delta + y & - x\end{matrix}\right]
  • Variables: x, y
../_images/conic_avoided_c.png

Potential delta_gap_rotsym

  • Formula: V(x) = \left[\begin{matrix}\frac{1}{2} \tanh{\left (\sqrt{x^{2} + y^{2}} \right )} & \delta\\\delta & - \frac{1}{2} \tanh{\left (\sqrt{x^{2} + y^{2}} \right )}\end{matrix}\right]
  • Variables: x, y
../_images/delta_gap_rotsym.png

Potential harmonic_tube

  • Formula: V(x) = \sigma z + \frac{wx^{2} x^{2}}{2} + \frac{wy^{2} y^{2}}{2}
  • Variables: x, y, z
  • Default values:
    • \sigma = -0.1
    • wy = 1.0
    • wx = 1.0

Potential quadratic_3d

  • Formula: V(x) = \frac{sigmax x^{2}}{2} + \frac{sigmay y^{2}}{2} + \frac{sigmaz z^{2}}{2}
  • Variables: x, y, z
  • Default values:
    • sigmay = 1/2
    • sigmax = 1/2
    • sigmaz = 1/2

Potential harmonic_hypertube

  • Formula: V(x) = \sigma x_{4} + \frac{w_{1}^{2} x_{1}^{2}}{2} + \frac{w_{2}^{2} x_{2}^{2}}{2} + \frac{w_{3}^{2} x_{3}^{2}}{2}
  • Variables: x_{1}, x_{2}, x_{3}, x_{4}
  • Default values:
    • \sigma = -0.1
    • w_{3} = 1.0
    • w_{2} = 1.0
    • w_{1} = 1.0

Potential quadratic_4d

  • Formula: V(x) = \frac{\sigma_{1}}{2} + \frac{\sigma_{2} x_{2}^{2}}{2} + \frac{\sigma_{3} x_{3}^{2}}{2} + \frac{\sigma_{4} x_{4}^{2}}{2}
  • Variables: x_{1}, x_{2}, x_{3}, x_{4}
  • Default values:
    • \sigma_{4} = 1/2
    • \sigma_{1} = 1/2
    • \sigma_{3} = 1/2
    • \sigma_{2} = 1/2