HagedornWavepacketTransformPhiPsi

About the HagedornWavepacketTransformPhiPsi class

The WaveBlocks Project

@author: R. Bourquin @copyright: Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015, 2016 R. Bourquin @license: Modified BSD License

Inheritance diagram

Inheritance diagram of HagedornWavepacketTransformPhiPsi

Class documentation

class WaveBlocksND.HagedornWavepacketTransformPhiPsi[source]

Implementation of the unitary transformation between old-kind Hagedorn wavepackets \Phi[\Pi] and new-kind Hagedorn wavepackets \Psi[\Pi].

multiply_PiT_v(nu, mu, lut, v)[source]

Multiply the matrix \mathbf{P_i}^{\mathrm{T}} by a vector \underline{v} from the right. Do not construct the matrix explicitly.

Parameters:
  • nu – The list \nu_i.
  • mu – The list \mu_i.
  • lut – The lookup table.
  • v – The vector \underline{v} \in \mathbb{C}^{n(D,i)}.
multiply_Pi_v(nu, mu, lut, v)[source]

Multiply the matrix \mathbf{P_i} by a vector \underline{v} from the right. Do not construct the matrix explicitly.

Parameters:
  • nu – The list \nu_i.
  • mu – The list \mu_i.
  • lut – The lookup table.
  • v – The vector \underline{v} \in \mathcal{X}_i.
multiply_T_v(coeffs, K, NU, MU, D, J)[source]

Apply the transformation matrix \mathbf{T} to the coefficients \underline{c}.

Parameters:
  • coeffs – The coefficients vector \underline{c}.
  • K – The overlap matrix \mathbf{K}.
  • NU – The list of all \nu_i.
  • MU – The list of all \mu_i.
  • D – The dimension D.
  • J – The maximal l_1 norm of any \underline{k} \in \mathfrak{K}.
multiply_Tinv_v(coeffs, K, NU, MU, D, J)[source]

Apply the transformation matrix \mathbf{T}^{-1} to the coefficients \underline{d}.

Parameters:
  • coeffs – The coefficients vector \underline{d}.
  • K – The overlap matrix \mathbf{K}.
  • NU – The list of all \nu_i.
  • MU – The list of all \mu_i.
  • D – The dimension D.
  • J – The maximal l_1 norm of any \underline{k} \in \mathfrak{K}.
multiply_kronecker_power_v(D, A, v, i)[source]

Multiply the i-th Kronecker power of the matrix \mathbf{A} by a vector \underline{v} from the right.

Parameters:
  • D – The dimension D.
  • A – The matrix \mathbf{A}.
  • v – The vector \underline{v}.
  • i – The non-negative integer Kronecker power exponent.

Note

The matrix has to be square and of size D^i.

overlap(D, Pi, eps)[source]

Compute the overlap matrix:

\mathbf{K}_{r,c} := \langle \psi_{\underline{e_r}}[\Pi] | \phi_{\underline{e_c}}[\Pi] \rangle

Parameters:
  • D – The dimension D.
  • Pi – The parameter set \Pi.
  • eps – The semiclassical scaling parameter \varepsilon.
transform_phi_to_psi(HAWPphi)[source]

Transform a old-kind wavepacket \Phi[\Pi] into a new-kind wavepacket \Psi[\Pi].

Parameters:HAWPphi – The wavepacket \Phi[\Pi] to transform.
Returns:A new wavepacket object representing \Psi[\Pi].
transform_psi_to_phi(HAWPpsi)[source]

Transform a new-kind wavepacket \Psi[\Pi] into a old-kind wavepacket \Phi[\Pi].

Parameters:HAWPpsi – The wavepacket \Psi[\Pi] to transform.
Returns:A new wavepacket object representing \Phi[\Pi].