SplittingParameters

About the SplittingParameters class

The WaveBlocks Project

@author: R. Bourquin @copyright: Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015, 2016 R. Bourquin @license: Modified BSD License

Inheritance diagram

Inheritance diagram of SplittingParameters

Class documentation

class WaveBlocksND.SplittingParameters[source]
build(method)[source]
Parameters:method – A string specifying the method for time integration.
Returns:Two arrays a and b.
Method Order Authors Reference
LT 1 Lie/Trotter [1], [3] page 42, equation 5.2
S2 2 Strang [2], [3] page 42, equation 5.3
SS 2 Strang [2], [3] page 42, equation 5.3
PRKS6 4 Blanes/Moan [4] page 318, table 2, ‘S6’
BM42 4 Blanes/Moan [4] page 318, table 3, ‘SRKNb6’
Y4 4 Yoshida [5], [3] page 40, equation 4.4
Y61 6 Yoshida [5], [3] page 144, equation 3.11
BM63 6 Blanes/Moan [4] page 318, table 3, ‘SRKNa14’
KL6 6 Kahan/Li [6], [3] page 144, equation 3.12
KL8 8 Kahan/Li [6], [3] page 145, equation 3.14
KL10 10 Kahan/Li [6], [3] page 146, equation 3.15
[1]H.F. Trotter, “On the product of semi-groups of operators”, Proc. Am. Math. Soc.1O (1959) 545-551.
[2](1, 2) G. Strang, “On the construction and comparison of difference schemes”, SIAM J. Numer. Anal. 5 (1968) 506-517.
[3](1, 2, 3, 4, 5, 6, 7, 8) E. Hairer, C. Lubich, and G. Wanner, “Geometric Numerical Integration - Structure-Preserving Algorithms for Ordinary Differential Equations”, Springer-Verlag, New York, 2002 (Corrected second printing 2004).
[4](1, 2, 3) S. Blanes and P.C. Moan, “Practical Symplectic Partitioned Runge-Kutta and Runge-Kutta-Nystrom Methods”, J. Computational and Applied Mathematics, Volume 142, Issue 2, (2002) 313-330.
[5](1, 2) H. Yoshida, “Construction of higher order symplectic integrators”, Phys. Lett. A 150 (1990) 262-268.
[6](1, 2, 3) W. Kahan and R.-c. Li, “Composition constants for raising the orders of unconventional schemes for ordinary differential equations”, Math. Comput. 66 (1997) 1089-1099.
intsplit(psi1, psi2, a, b, tspan, N, args1=[], args2=[])[source]

Compute a single, full propagation step by operator splitting.

Parameters:
  • psi1 – First evolution operator \Psi_a
  • psi2 – Second evolution operator \Psi_b
  • a – Parameters for evolution with \Psi_a
  • b – Parameters for evolution with \Psi_b
  • tspan – Timespan t of a single, full splitting step
  • N – Number of substeps to perform
  • args1 – Additional optional arguments of \Psi_a
  • args2 – Additional optional arguments of \Psi_b

Note

The values for args1 and args2 have to be of type list even in case of single items.

order(method)[source]
Parameters:method – A string specifying the method for time integration.
Returns:The order of this method.