HagedornWavepacketTransformPhiPsi¶
About the HagedornWavepacketTransformPhiPsi class¶
The WaveBlocks Project
@author: R. Bourquin @copyright: Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015, 2016 R. Bourquin @license: Modified BSD License
Inheritance diagram¶
Class documentation¶
-
class
WaveBlocksND.HagedornWavepacketTransformPhiPsi[source]¶ Implementation of the unitary transformation between old-kind Hagedorn wavepackets
and new-kind Hagedorn wavepackets
.-
multiply_PiT_v(nu, mu, lut, v)[source]¶ Multiply the matrix
by a vector
from the right. Do not construct the matrix explicitly.Parameters: - nu – The list
. - mu – The list
. - lut – The lookup table.
- v – The vector
.
- nu – The list
-
multiply_Pi_v(nu, mu, lut, v)[source]¶ Multiply the matrix
by a vector
from the right. Do not construct the matrix explicitly.Parameters: - nu – The list
. - mu – The list
. - lut – The lookup table.
- v – The vector
.
- nu – The list
-
multiply_T_v(coeffs, K, NU, MU, D, J)[source]¶ Apply the transformation matrix
to the coefficients
.Parameters: - coeffs – The coefficients vector
. - K – The overlap matrix
. - NU – The list of all
. - MU – The list of all
. - D – The dimension
. - J – The maximal
norm of any
.
- coeffs – The coefficients vector
-
multiply_Tinv_v(coeffs, K, NU, MU, D, J)[source]¶ Apply the transformation matrix
to the coefficients
.Parameters: - coeffs – The coefficients vector
. - K – The overlap matrix
. - NU – The list of all
. - MU – The list of all
. - D – The dimension
. - J – The maximal
norm of any
.
- coeffs – The coefficients vector
-
multiply_kronecker_power_v(D, A, v, i)[source]¶ Multiply the
-th Kronecker power of the matrix
by a vector
from the right.Parameters: - D – The dimension
. - A – The matrix
. - v – The vector
. - i – The non-negative integer Kronecker power exponent.
Note
The matrix has to be square and of size
.- D – The dimension
-
overlap(D, Pi, eps)[source]¶ Compute the overlap matrix:
![\mathbf{K}_{r,c} := \langle \psi_{\underline{e_r}}[\Pi] | \phi_{\underline{e_c}}[\Pi] \rangle](../_images/math/e9f1db5308e8561a22b57f2f6afb1006bb8c01b8.png)
Parameters: - D – The dimension
. - Pi – The parameter set
. - eps – The semiclassical scaling parameter
.
- D – The dimension
-