WaveBlocksND
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123]
 Cwaveblocks::wavepackets::shapes::shape_enum::_strict_union__heap_entry< MultiIndex >
 Cwaveblocks::potentials::modules::evaluation::Abstract< Subtype, Basis >Abstract class for potential evaluation
 Cwaveblocks::potentials::modules::localRemainder::Abstract< Subtype, N, D >
 Cwaveblocks::potentials::modules::exponential::Abstract< Subtype, Basis >Abstract class for exponential of potential evaluation
 Cwaveblocks::potentials::modules::hessian::Abstract< Subtype, Basis >Abstract class for potential evaluation
 Cwaveblocks::potentials::modules::taylor::Abstract< Subtype, Basis >Abstract class for potential evaluation
 Cwaveblocks::potentials::modules::jacobian::Abstract< Subtype, Basis >Abstract class for potential evaluation
 Cwaveblocks::potentials::modules::localQuadratic::Abstract< Subtype, Basis >Abstract class for local quadratic evaluation
 Cwaveblocks::potentials::modules::localRemainder::Abstract< General< DiagDifference, EvalImpl, LocQuadraticImpl, N, D >, N, D >
 Cwaveblocks::potentials::modules::jacobian::Abstract< Standard< Basis >, Basis >
 Cwaveblocks::potentials::modules::hessian::Abstract< Standard< Basis >, Basis >
 Cwaveblocks::potentials::modules::evaluation::Abstract< Standard< Basis >, Basis >
 Cwaveblocks::potentials::modules::exponential::Abstract< Standard< EvalImpl, B< 1, D > >, B< 1, D > >
 Cwaveblocks::potentials::modules::exponential::Abstract< Standard< EvalImpl, Basis >, Basis >
 Cwaveblocks::potentials::modules::taylor::Abstract< Standard< EvalImpl, JacImpl, HessImpl, Basis >, Basis >
 Cwaveblocks::potentials::modules::localQuadratic::Abstract< Standard< TaylorImpl, B< 1, 1, C > >, B< 1, 1, C > >
 Cwaveblocks::potentials::modules::localQuadratic::Abstract< Standard< TaylorImpl, B< 1, D, C > >, B< 1, D, C > >
 Cwaveblocks::potentials::modules::localQuadratic::Abstract< Standard< TaylorImpl, B< N, 1, C > >, B< N, 1, C > >
 Cwaveblocks::potentials::modules::localQuadratic::Abstract< Standard< TaylorImpl, Basis >, Basis >
 Cwaveblocks::wavepackets::AbstractScalarHaWpBasis< D, MultiIndex >Abstract superclass that represents a set of basis function to a scalar Hagedorn wavepacket
 Cwaveblocks::wavepackets::shapes::AbstractShape< D >Subclasses provide a description of a basis shape
 Cwaveblocks::potentials::bases::Basis< N, D, C >Helper class to ease template specialzations
 Cwaveblocks::potentials::bases::Basis< 1, 1, C >
 Cwaveblocks::potentials::bases::Basis< 1, D, C >
 Cwaveblocks::potentials::bases::Basis< N, 1, C >
 Cwaveblocks::csv::CoefficientsFileParser
 Cwaveblocks::math::ContinuousSqrt< T >This class deals with the issue, that the square root of complex numbers is not unique
 Cwaveblocks::math::ContinuousSqrt< real_t >
 CYAML::convert< Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >
 CYAML::convert< std::complex< double > >
 CYAML::convert< waveblocks::wavepackets::HaWpParamSet< D > >
 Cwaveblocks::io::ctypeThe ctype struct for writing complex numbers
 Cwaveblocks::potentials::modules::localRemainder::helper::DiagonalDifference< LocQuadImpl, N, D >
 Cwaveblocks::potentials::modules::localRemainder::helper::DiagonalDifference< LocQuadImpl, 1, D >
 Cwaveblocks::wavepackets::shapes::TinyMultiIndex< UINT, D >::Entry
 Cstd::equal_to< waveblocks::wavepackets::shapes::TinyMultiIndex< UINT, D > >
 CEvalImpl
 Cwaveblocks::wavepackets::shapes::ExtendedShape< D, S >Defines the extension of a shape: For each lattice point add all its neighbours
 Cwaveblocks::wavepackets::shapes::ExtendedShape< D, HyperCubicShape< D > >
 Cwaveblocks::utilities::FunctionMatrixEvaluator< N, C, M, A, R, F >
 Cwaveblocks::utilities::FunctionMatrixEvaluator< 1, 1, M, A, R, F >
 Cwaveblocks::innerproducts::GaussHermiteQR< ORDER >Structure providing weighted nodes for Gauss Hermite quadrature
 Cwaveblocks::innerproducts::GenzKeisterQR< DIM, LEVEL >Structure providing weighted nodes for Genz-Keister quadrature
 Cwaveblocks::propagators::Hagedorn< N, D, MultiIndex, MDQR >Implements the Hagedorn propagator for vector valued wavepackets. Offers a method for time propagation
 Cwaveblocks::propagators::Hagedorn< 1, D, MultiIndex, MDQR >Implements the Hagedorn propagator for scalar wavepackets. Offers a method for time propagation
 Cstd::hash< waveblocks::wavepackets::shapes::TinyMultiIndex< UINT, D > >
 Cwaveblocks::csv::HaWpCoefficientsLoader< D, MultiIndex >
 Cwaveblocks::wavepackets::HaWpEvaluator< D, MultiIndex, N >Evaluates a wavepacket slice by slice
 Cwaveblocks::wavepackets::HaWpGradientEvaluator< D, MultiIndex >This class constructs the coefficients of the Hagedorn gradient wavepacket \( -i\varepsilon^2\nabla_x \) applied to an arbitrary scalar wavepacket \( \Phi \)
 Cwaveblocks::wavepackets::HaWpGradientOperator< D, MultiIndex >This class applies the gradient operator \( -i\varepsilon^2\nabla_x \) to an arbitrary scalar wavepacket \( \Phi \)
 Cwaveblocks::wavepackets::HaWpParamSet< D >This class represents the Hagedorn parameter set \( \Pi = \{q, p, Q, P, S\} \)
 Cwaveblocks::yaml::HaWpParamSetDecoder< D >
 Cwaveblocks::io::hdf5writer< D >Our HDF5 writer class
 Cwaveblocks::propagators::steps::HelperA< N, D, MODE >Performs commong code of StepU for all specializations
 Cwaveblocks::propagators::steps::HelperF< Packet, Potential, IP, N, D >Builds the inner product matrix
 Cwaveblocks::propagators::steps::HelperF< Packet, Potential, IP, 1, D >Specialization for N = 1
 Cwaveblocks::propagators::steps::HelperL< Mode >Helper class for StepU. If Mode then level is supscripted in i
 Cwaveblocks::propagators::steps::HelperL< false >
 CHessImpl
 Cwaveblocks::wavepackets::HomogeneousHaWp< D, MultiIndex >Represents a homogeneous Hagedorn wavepacket \( \Psi \) with \( N \) components \( \Phi_n \). All components share the same Hagedorn parameterset \( \Pi \) and scaling parameter \( \varepsilon \)
 Cwaveblocks::innerproducts::HomogeneousInnerProduct< D, MultiIndex, QR >Class providing homogeneous inner product calculation of scalar wavepackets
 Cwaveblocks::potentials::modules::localRemainder::helper::DiagonalDifference< LocQuadImpl, 1, D >::Homogenous
 Cwaveblocks::potentials::modules::localRemainder::helper::DiagonalDifference< LocQuadImpl, N, D >::Homogenous
 Cwaveblocks::wavepackets::InhomogeneousHaWp< D, MultiIndex >Represents an inhomogeneous Hagedorn wavepacket \( \Psi \) with \( N \) components \( \Phi_n \). All components have a different set of Hagedorn parameters \( \Pi \), basis shapes \( \mathfrak{K} \) and coefficients \( c \)
 Cwaveblocks::innerproducts::InhomogeneousInnerProduct< D, MultiIndex, QR >Class providing inhomogeneous inner product calculation of scalar wavepackets
 Cwaveblocks::potentials::modules::localRemainder::helper::DiagonalDifference< LocQuadImpl, N, D >::Inhomogenous
 CJacImpl
 Cwaveblocks::math::KahanSum< T >The Kahan's algorithm achieves O(1) error growth for summing N numbers
 Cstd::less< waveblocks::wavepackets::shapes::TinyMultiIndex< UINT, D > >
 Cwaveblocks::utilities::MatrixToGrid< Matrix >Adaptor which accepts an Eigen::Matrix and emulates some behavior of a std::vector
 Cwaveblocks::utilities::MatrixToGridIterator< Matrix >Forward iterator for the MatrixToGrid class
 Cwaveblocks::utilities::PacketToCoefficients< Packet >
 Cwaveblocks::utilities::PacketToCoefficients< wavepackets::ScalarHaWp< D, MultiIndex > >
 Cwaveblocks::innerproducts::QuadratureRuleNode and weight values for a 1D quadrature rule
 Cwaveblocks::yaml::ScalarHaWpDecoder< D, MultiIndex >
 Cwaveblocks::yaml::ShapeDecoder< D >
 Cwaveblocks::wavepackets::shapes::ShapeEnum< D, MultiIndex >A shape enumeration is a complete, ordered list of all lattice nodes that are part of the basis shape
 Cwaveblocks::wavepackets::shapes::ShapeEnumerator< D, MultiIndex >Enumerates nodes of a basis shape
 Cwaveblocks::wavepackets::shapes::ShapeExtensionCache< D, MultiIndex >
 Cwaveblocks::wavepackets::shapes::ShapeSlice< D, MultiIndex >The \( s \)-th slice of a shape enumeration contains all multi-indices \( \boldsymbol{k} \in \mathfrak{K} \) that satisfy \( \displaystyle\sum_{d=1}^{D} k_d = s \)
 Cwaveblocks::utilities::Squeeze< D, T >
 Cwaveblocks::utilities::Squeeze< 1, CMatrix< 1, Eigen::Dynamic > >
 Cwaveblocks::utilities::Squeeze< 1, T >
 Cwaveblocks::utilities::Squeeze< D, CMatrix< D, Eigen::Dynamic > >
 Cwaveblocks::potentials::modules::leadingLevelOwner::Standard< Owned >
 Cwaveblocks::propagators::steps::StepT< N, D >Propagate one step with the kinetic operator T
 Cwaveblocks::propagators::steps::StepU< N, D >Propagate one step with the quadratic potential part U
 Cwaveblocks::propagators::steps::StepW< Packet, Potential, N, D, IP >Propagate one step with the non-quadratic potential remainder part W
 CTaylorImpl
 Cwaveblocks::innerproducts::TensorProductQR< RULES >Structure providing weighted nodes for Tensor Product quadrature
 Cwaveblocks::utilities::Timer
 Cwaveblocks::wavepackets::shapes::TinyMultiIndex< UINT, D >Represents a multi-index using a single integer
 Cwaveblocks::utilities::Unsqueeze< D, T >
 Cwaveblocks::utilities::Unsqueeze< 1, T >
 Cwaveblocks::innerproducts::VectorInnerProduct< D, MultiIndex, QR >Class providing inner product calculation of multi-component wavepackets